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Abstract: In this study, six algorithms (both empirical and semi-analytical) developed for
the estimation of Kd in the ultraviolet (UV) domain (specifically 360, 380, and 400 nm) were
evaluated from a dataset of 316 stations covering oligotrophic ocean and coastal waters. In
particular, the semi-analytical algorithm (Lee et al. 2013) used remote sensing reflectance in
these near-blue UV bands estimated from a recently developed deep learning system as the input.
For Kd(380) in a range of 0.018 - 2.34 m−1, it is found that the semi-analytical algorithm has
the best performance, where the mean absolute relative difference (MARD) is 0.19, and the
coefficient of determination (R2) is 0.94. For the empirical algorithms, the MARD values are
0.23–0.90, with R2 as 0.70–0.92, for this evaluation dataset. For a VIIRS and in situ matchup
dataset (N= 62), the MARD of Kd(380) is 0.21 (R2 as 0.94) by the semi-analytical algorithm.
These results indicate that a combination of deep learning system and semi-analytical algorithms
can provide reliable Kd(UV) for past and present satellite ocean color missions that have no
spectral bands in the UV, where global Kd(UV) products are required for comprehensive studies
of UV radiation on marine primary productivity and biogeochemical processes in the ocean.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Ultraviolet (UV) radiation has a complex impact on aquatic ecosystems [1]. It could be an
energy source for phytoplankton [2], may also prohibit phytoplankton growth, can contribute to
the photochemical transformation of dissolved organic matter (DOM) [3,4], and can affect the
vertical movement of zooplankton [5]. In addition, ultraviolet radiation modulates the release of
methane and other climate-related gases by phytoplankton cells, which directly contributes to
global climate change [6]. Thus, quantifying UV radiation in ocean is an important task for a
wide range of oceanographic studies. The amount of UV radiation reaching the ocean surface is
primarily determined by the layer of ozone in the atmosphere, which is further modulated by
water’s attenuation when UV radiation propagates from surface to deeper depths [1,7]. This
attenuation parameter is commonly termed as the diffuse attenuation coefficient of downwelling
irradiance (Kd; m−1). While UV radiation at surface varies in space and time, Kd, an important
apparent optical property [8], also varies with water constituents. Therefore, to evaluate and
understand UV related processes in the ocean, it is necessary to accurately map the spatial
variation of Kd in the UV domain year around [9,10], a task that could only be achieved from
satellite measurements.

The traditional satellites aimed at ocean’s bio-optical properties, such as the Coastal Zone
Color Scanner (CZCS), Sea-viewing Wide Field-of-view (SeaWiFS), Moderate Resolution
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Imaging Spectroradiometer (MODIS), Medium Resolution Imaging Spectrometer (MERIS),
Visible Infrared Imaging Radiometer Suite (VIIRS), etc., however, don’t have spectral bands
shorter than 410 nm, thus it is a challenge to obtain global Kd properties in the UV from these
ocean color satellites. While modern ocean color satellites start to include bands in the UV
(e.g., Plankton, Aerosol, Cloud and ocean Ecosystem (PACE), Second generation Global Imager
(SGLI), Ocean and Land Colour Instrument (OLCI), etc.), sophisticated algorithms must be
developed in order to generate products in the UV for the earlier satellites, so that UV properties
in the ocean could be extended back 20+ years. For this goal, as described in more details in
Section 2, various algorithms have been developed in the past decades for the estimation of Kd
in the UV (termed as Kd(UV) in the following, with the shortest wavelength limited to 360 nm
here), either for one specific wavelength or many wavelengths [10–12]. But the applicability
of these algorithms for global applications has not been evaluated. More importantly, most of
these algorithms are empirical [9,13–15], where their applicability is usually limited to the data
or region used during the phase of algorithm development. Recently it is found that remote
sensing reflectance (Rrs, sr−1) in the near-blue UV bands (360–400 nm) can be well estimated
from Rrs in the visible bands using deep-learning approaches [16,17], thus it is possible to employ
a semi-analytical algorithm to estimate Kd(UV) for data obtained by traditional ocean color
satellites.

Thus in this study, based on measurements from oligotrophic ocean to coastal waters,
we evaluated six algorithms developed for Kd(UV), as well as a performance with VIIRS
measurements. This paper is such organized that Section 2 describes the six algorithms
(empirical and semi-analytical); Section 3 provides information of both field measured data and
satellite data used for algorithm evaluations; Section 4 presents results and discussion about these
algorithms; and Section 5 summarizes our findings and presents some future prospects.

2. Brief description of algorithms for Kd(UV)

A wide range of algorithms have been developed for the estimation of Kd(UV) in the past decades
[9–12,14,15,18,19]. These can be grouped into empirical and semi-analytical algorithms, with
empirical algorithms including one-step and multi-step schemes. A brief description of the
essence of such representative algorithms is provided below.

2.1. One-step empirical algorithm (J2003)

Based on field-measured data (53 stations, Kd(380) in a range of 0.034 - 4.4 m−1) in the Mid-
Atlantic Gulf and the Bering Sea from 1996 to 1998, following the scheme for Kd(490) [20,21],
Johannessen et al. [11] developed a simple empirical relationship between the ratio of Rrs and
Kd(380),

Kd(380) = 0.302
(︃
Rrs(412)
Rrs(555)

)︃−1.24
. (1)

Here Rrs(sr−1) is the remote sensing reflectance of a water body, which is defined as the ratio
of water-leaving radiance to downwelling irradiance just above the surface. Rrs is a standard
product for many satellite ocean color missions.

2.2. Two-step empirical algorithm (M2001)

Centered on the “Case 1” concept and system, Morel and Maritorena [12] developed empirical
relationships between Kd and chlorophyll concentration ([Chl], mg/m3) based on nearly 30 years
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of measurements (1969–1996, total 255 data stations). The relationship is written as:

Kd(λ) = Kw(λ) + X(λ) × [Chl]e(λ), (2a)

Kw(λ) = aw(λ) + bbw(λ). (2b)

Here χ and e are empirical coefficients developed from the dataset, while aw and bbw are the
absorption and backscattering coefficients of pure seawater. In the development of this scheme
[12], values of aw(λ) were taken from the literature [22,23], with values of bbw(λ) from Morel
[24]. Although both aw and bbw values were revised in the recent decade [25,26], but we used the
aw and bbw values originally adopted for this scheme, as χ and e were estimated using those aw
and bbw values. For the estimation of Kd, [Chl] is a standard product from ocean color satellites,
which is generally produced using empirical algorithms [27],

[Chl] = 10α0+α1×RR+α2×RR2+α3×RR3+α4×RR4
, (3a)

RR = log10

(︃
Max(Rrs(λ1), Rrs(λ2), Rrs(λ3))

Rrs(λ4)

)︃
. (3b)

Here λ1∼3 are wavelengths in the range between 440 and 510 nm, and λ4 is around 550 nm.
α0∼4 are empirical coefficients derived by pooling global measurements.

2.3. Empirical algorithm based on principal component analysis (C2014)

Fichot et al. [9] and Cao et al. [14] used principal component analysis (PCA) to decompose an
Rrs dataset into a few principal components (PCs). For a given Rrs spectrum, the scores of the
first four PCs are used as predictors of Kd(λ) (the algorithm is termed as SeaUV and SeaUVc),
written as

Ln(Kd(λ)) = α + β × PC1 + γ × PC2 + δ × PC3 + ε × PC4, (4)

where α, β, γ, δ, and ε are empirical coefficients [9,14], while PC1−4 are the scores from the
principal component analysis. Since SeaUVc [14] is an updated version and performed better in
the data studied [9,14], this effort focused on SeaUVc, with its processing based on the value
of Kd(490) (another standard product from satellite ocean color missions). When Kd(490) >
0.32 m−1, the updated SeaUVc of Cao et al. [14] is used, otherwise, SeaUVc of Fichot et al. [9]
is used, so by design this scheme is intended for application of both clear and turbid waters.

2.4. Multi-step empirical algorithm (V2001)

Two decades ago, Vasilkov et al. [10] developed a Kd(UV) algorithm based on a relationship
between Kd and the inherent optical properties (IOPs) [8]. From data obtained via Monte Carlo
simulations, Gordon [28] modeled subsurface Kd as a function of water’s absorption (a) and
backscattering (bb) coefficients as:

Kd(λ)/D0 = 1.0395(a(λ) + bb(λ)), (5a)

D0 = f /cos(θ0w) + 1.197(1 − f ), (5b)

where f is the fraction of direct sunlight in the incident irradiance transmitted through the sea
surface under clear sky, θ0w is the solar zenith angle in water. The value of f can be calculated
based on solar zenith angle and wavelength from atmospheric models. It then requires values
of a and bb for the calculation of Kd. Vasilkov et al. [10] used [Chl] and empirical averages
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of phytoplankton-specific absorption coefficients for the estimations. Specifically, a and bb are
modeled as [29–31]:

a(λ) = aw(λ) + aph(λ) + aDOM(λ). (6a)

bb(λ) = bbw(λ) + bbp(λ). (6b)

with subscripts “p, ph, DOM” representing particles, phytoplankton pigments, and dissolved
organic matter, respectively. The values of aw and bbw were adopted from Smith and Baker [22].

The absorption coefficient of phytoplankton pigments (aph(λ)) is expressed as

aph(λ) = [Chl] × a∗ph(λ), (7)

with a∗ph(λ) (the chlorophyll-specific absorption coefficient) taken from Vernet et al. [32].
Spectra of bbp and aDOM are modeled as:

aDOM(λ) = aDOM(440) e−S(λ−440), (8a)

bbp(λ) = bbp(490)(λ/490)−η , (8b)

where the spectral slope (S) of aDOM was taken as 0.017 nm−1, and the backscattering exponent
(η) was assumed as 1.0 [33]. Further, following Morel [34], aDOM(440) was assumed as 20% of
the sum of (aw(440)+ aph(440)). After aDOM(440) and S values are known, spectrum of aDOM(λ)
can then be calculated following Eq. 8(a). The value of bbp(490) was estimated based on the
standard SeaWiFS product Kd(490) [20,35] through the combination of Eqs. 5–8, which can
solve for bbp(490).

Although this complex scheme (V2001) started with the Kd - IOPs model developed by Gordon
[28], it relies on [Chl] and Kd(490) as the inputs, where both are empirically estimated from
the band ratio of Rrs, it is thus essentially a multi-step empirical algorithm for the estimation of
Kd(UV).

2.5. Absorption-based empirical method (S2011)

Based on measured data (2007∼2009, total 106 data stations), Smyth [15] developed an empirical
relationship between Kd(380) and a(443) as:

Kd(380) = A(λ) × a(443)2 + B(λ) × a(443) + C(λ) (9)

with A, B and C the fitting coefficients for targeted wavelength (380 nm here in particular) [15].
Kd(305, 325, 340) was further empirically linked with Kd(380) [15]. In this system, the required
a(443) was derived from a look-up-table algorithm developed by Smyth et al. [36], with data
obtained from Hydrolight [37] simulations. Since we don’t have the detailed look-up-table of
this algorithm, while Smyth [15] showed that this method can obtain similar total absorption as
the quasi-analytical algorithm (QAA) [38], here we applied a(443) obtained from QAA to Eq. 9,
and focused on Kd(380). We did not evaluate the proposed relationships for Kd(305, 325, 340)
[15] as the shortest wavelength from field measurements is 350 nm. Also, note that this system
modeled Kd(305, 325, 340) as functions of Kd(380), respectively, which suggests Kd(UV) of
different wavelengths co-vary for the global ocean, a relationship not generally supported from
measurements [16].
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2.6. Semi-analytical algorithm (L2013)

Through derivations of the radiative transfer equation, Lee et al. [18] found that Kd can be
described as a function of a and bb through

Kd(λ) = m × a(λ) + v × bb(λ). (10a)

Based on Hydrolight [37] simulations, the two parameters m and ν were further described as
functions of sun angle and IOPs, and Kd is then expressed as [19]:

Kd(λ) = (1 + m0 × θs)a(λ) + (1 − σ × ηw(λ))m1(1 − m2 × e−m3×a(λ))bb(λ), (10b)

where θs is the solar zenith angle in air (in deg), and ηw = bbw/bb. m0−3 and σ are model constants
and their values are 0.005, 4.259, 0.52, 10.8 and 0.265, respectively [19].

The required inputs for the calculation of Kd are θs, a and bb, with the IOPs (a&bb) derived
following the quasi-analytical algorithm [38]. Its recent version (QAA_v6, https://ioccg.org/wp-
content/uploads/2020/11/qaa_v6_202011.pdf) was employed for this study. The contribution of
Raman scattering to Rrs cannot be ignored for oceanic waters [39], which were removed following
the scheme developed in Lee et al. [19].

3. Data

3.1. Field-measured data

Two data sources, which cover waters from the ultra-oligotrophic ocean to turbid coastal waters,
are employed in this effort. The measurements of ultra-oligotrophic ocean were around the center
of the South Pacific Gyre (SPG, see Fig. 1(a)) from the BIOSOPE cruise, which were carried
out from 26 October to 11 December 2004 (a total of 25 stations). For these measurements, the
concentration of chlorophyll is as low as ∼0.01 mg/m3, while Kd(380) is as low as 0.018 m−1

(depth of 1% surface light is deeper than 200 m). There have been many publications about this
important and valuable field campaign [40–42], we thus omitted the details here.

Fig. 1. Locations of field measurements for the evaluation of Kd(UV) algorithms. (a) The
data came from the BIOSOPE cruise from 26 October to 11 December 2004. (b) The data
came from the NOAA VIIRS Cal/Val cruise off the East Coast of the United States and the
Gulf of Mexico from 2014 to 2019. The white stars are the measurement locations, the blue
stars represent stations for satellite and field measurements matched up, with the red star for
abnormal data.

Since we are not simply focusing on oceanic waters, measurements of many coastal waters are
also included in this effort. Specifically, data from the VIIRS Cal/Val campaigns were utilized,
which generally cover waters in the East Coast of the United States [43–47]. The measurements

https://ioccg.org/wp-content/uploads/2020/11/qaa_v6_202011.pdf
https://ioccg.org/wp-content/uploads/2020/11/qaa_v6_202011.pdf
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were taken from 2014 to 2019 (a total of 294 stations), covered both open ocean and relatively
turbid coastal waters (see Fig. 1(b)), where Kd(380) is in a range of ∼0.026 - 2.34 m−1.

For these VIIRS Cal/Val field measurements, profiles of Lu(λ,z) (spectral upwelling radiance,
µW cm−2 nm−1 sr−1) and Ed(λ,z) (spectral downwelling irradiance, µW cm−2 nm−1) were
measured with HyperOCR radiometers manufactured by Satlantic, Inc. The instruments were
always deployed in the sunny side of the operation ship and at least 20 m away, with the maximum
depth for some of these profiling measurements ∼50 m. To minimize uncertainties associated
with an individual profiling measurement, following recommendations of the in-water optical
measurement protocol [48,49], usually 4 to 5 profiles were taken for each station, which resulted
in 100’s of measurements per meter, thus allowing an accurate representation of the Lu(λ,z) and
Ed(λ,z) profiles. Further, spectral surface irradiance (Es(λ), µW cm−2 nm−1) was simultaneously
measured on the ship deck with another HyperOCR radiometer for irradiance. This data was used
in the Satlantic Prosoft Version 8.1.6 to remove short-term variations in the incident radiation at
sea surface. Note that the spectral range of these HyperOCR is ∼350–800 nm, with a spectral
bandwidth of 10 nm sampled every 3.3 nm.

From the Ed(λ,z) profiles, after excluding data with sensor tilt lager than 5 deg, following
Zibordi et al. [50], Kd of each band was calculated as the slope of the linear regression between z
and ln[Ed(λ, z)]. The depth range for regression is dependent on the wavelength and was set
using the optical depth (OD). The shallowest depth used in the regression is 0.5 m from surface,
which is the minimum depth a HyperPro can take measurements. The maximum depth used in
the regression varies by wavelength and is defined by the maximum optical depth used in the data
processing or 20 m whichever is shallower. This maximum optical depth, which varied from 0.5
to 2 for the coastal waters in this study, is determined based on that all the regressions are linear
for all wavelengths.

Rrs(λ) is defined as

Rrs(λ) =
Lw(λ)

Es(λ)
, (11a)

where Lw(λ) is the spectral water-leaving radiance (µW cm−2 nm−1 sr−1). For profiling
measurements, Lw(λ) was derived from the relationship:

Lw(λ) =
t

n2 Lu(0−, λ), (11b)

where t is the Fresnel transmittance of radiance from water to air, approximating 0.975. n is the
refractive index of water, with a common value as 1.34. Lu(0−, λ) is the upward radiance just
beneath the sea surface, which was calculated by extrapolating the Lu(z, λ) profile [48] using
the Satlantic Prosoft Version 8.1.6. We did not correct the self-shading effect in the Lu(z, λ)
measurements, as the uncertainty from this factor is just a few percent [49], which is much less
than the uncertainties introduced by an algorithm for the inversion of Kd.

For the 294 total stations of clear and cloudy days having HyperPro measurements, it resulted in
291 valid Kd and Rrs spectra. The other 3 stations showing abnormal Kd values (approaching 0 at
∼500 nm) were excluded in this report, although an inclusion of these stations has negligible impact
on the statistics. Fig. 2 shows examples of Rrs(λ) and Kd(λ) spectra from these measurements. As
an indicator of the wide coverage of waters included in this effort, the range of Rrs(440)/Rrs(550)
is 0.33 to 13.23.

3.2. Satellite data

To gain insights on applications to satellite ocean color remote sensing, taking the Visible Infrared
Imaging Radiometer Suite (VIIRS) as an example, we used satellite-field matchup data to evaluate
algorithm estimated Kd(UV). VIIRS Level-2 normalized water-leaving radiance (nLw; mW cm−2
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Fig. 2. Examples of field measurements used in this study. (a) measured Rrs spectra; (b)
measured Kd spectra.

sr−1 µm−1) in the visible band were downloaded from the official website of NOAA CoastWatch
(https://coastwatch.noaa.gov). These nLw(λ) were converted to Rrs through

Rrs(λ) =
nLw(λ)

F0
. (12)

where F0 is the extra-terrestrial solar radiation, which is constant and available in the literature
[51].

For a field station, the median value of 3× 3 VIIRS pixels centered on this station was used
to represent satellite measurement [52]. Further, the time window between in situ and satellite
data was set as± 5 hours [53]. Also, the quality of the spectral data was judged according to
a quality-assurance (QA) score [54] and Level-2 Processing Flags (l2_flags), where only data
with QA score > 0.6 were kept, and excluded VIIRS data containing these l2_flags (atmospheric
correction failure, land pixel, probable cloud or ice contamination, strong sun glint contamination
and cloud straylight or shadow contamination). We subsequently obtained 62 matchups between
VIIRS and field measurements.

3.3. Rrs(UV)

Since the shortest band of VIIRS (and SeaWiFS, MODIS, etc.) is ∼410 nm, in this study Rrs
at 360, 380, and 400 nm were generated following a deep-learning scheme (UVISRdl) recently
developed by Wang et al. [16]. UVISRdl has 4 hidden layers along with various neurons; it
uses Rrs(visible) as the input to generate Rrs(UV), with the estimated Rrs(UV) found matching
field-measured value within ∼10%. The details of UVISRdl can be found in Wang et al. [16].

To be consistent with satellite applications, for the evaluation of L2013 using field measurements
that requires Rrs(UV) for the analytical calculation of Kd(UV), the field dataset also employed
UVISRdl to obtain Rrs(UV), although there are Rrs(UV) data available from the profiling
measurements. In short, for the evaluation of the six algorithms, it is the same visible Rrs
spectrum applied to all algorithms.

3.4. Accuracy assessment

To quantify the accuracy of the estimated Kd(UV), the following statistical indicators are
used for quantitative evaluation: root mean square difference (RMSD), mean absolute relative
difference (MARD), mean absolute unbiased relative difference (MAURD), bias and coefficient

https://coastwatch.noaa.gov
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of determination (R2). They are defined as follows (N is the number of samples):

RMSD =

√︄∑︁N
i=1 (Xest,i − Xmea,i)

2

N
, (13)

MARD =
1
N

∑︂N

i=1

|Xest,i − Xmea,i |

Xmea,i
, (14)

MAURD =
1
N

∑︂N

i=1

|︁|︁|︁|︁Xest,i − Xmea,i

Xest,i + Xmea,i

|︁|︁|︁|︁ × 2, (15)

bias =
1
N

∑︂N

i=1
(Xest,i − Xmea,i) (16)

where Xest,i and Xmea,i are algorithm estimate and field measurement of Kd(UV), respectively.

4. Results and discussion

4.1. Evaluation of Kd(UV) from field-measured reflectance

The above-described six empirical and semi-analytical algorithms for the estimation of Kd(UV)
were evaluated with the dataset described in Section 3, which covers waters from the oligotrophic
ocean to coastal areas. Figs. 3∼4 and Table 1 summarize the performance of these algorithms,
where some of these algorithms [9,11,14,15] focused on Kd(380) and/or other specific wavelengths
(Fig. 3), while the other three algorithms also cover 360 nm and 400 nm (Fig. 4). Outcomes of
each algorithm are described below.

Fig. 3. Comparison between measured and algorithm-estimated Kd(380) (the blue dots
represent data from the BIOSOPE cruise, the green dots represent data from the NOAA
Cal/Val cruise). (a) J2003, (b) S2011, (c) C2014, (d) M2001, (e) V2001, (f ) L2013.

4.1.1. J2003

The empirical algorithm (J2003) for Kd(380) developed by Johannessen et al. (2003) is one
of the earlier attempts for the estimation of Kd(UV) from ocean color measurements. For this
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Fig. 4. As Fig. 3, but for Kd(360) ((a) M2001, (b) V2001, (c) L2013) and Kd(400) ((d)
M2001, (e) V2001, (f ) L2013).

Table 1. K d(360), K d(380) and K d(400) algorithm inversion results statistical analysis.

Model Band Data Number RMSD (m−1) MARD MAURD bias (m−1) R2

M(2001)
Kd(360) 316

0.30 0.44 0.61 -0.17 0.81

V(2001) 0.26 0.41 0.45 -0.13 0.82

L(2013) 0.12 0.17 0.16 0.029 0.93

M(2001)

Kd(380) 316

0.24 0.38 0.52 -0.13 0.81

V(2001) 0.21 0.36 0.41 -0.10 0.82

J(2003) 0.082 0.23 0.27 -0.0017 0.92

S(2011) 0.12 0.31 0.35 -0.067 0.91

L(2013) 0.083 0.19 0.18 0.019 0.94

C(2014) 0.40 0.90 0.59 0.13 0.70

M(2001)
Kd(400) 316

0.20 0.35 0.45 -0.099 0.83

V(2001) 0.17 0.34 0.37 -0.073 0.84

L(2013) 0.065 0.22 0.20 0.016 0.94

evaluation dataset where Kd(380) is in a range of 0.018–2.34 m−1, J2003 performed very well
(Fig. 3(a)). The values of RMSD, MARD, and R2 are just slightly worse than that of L2013
(Table 1). This is likely due to that this empirical algorithm was developed also based on data
measured in the East Coast of the United States (Kd(380) was in a range of 0.033–4.39 m−1),
where there are similar data characteristics between the data for algorithm development and
data for algorithm evaluation. For the lower end of Kd(380) (<0.1 m−1) mostly obtained from
the BIOSOPE cruise, types of waters not covered by Johannessen et al. [11] in the phase of
algorithm development, Kd(380) estimated by J2003 appeared generally underestimated (by
∼47%) compared to field-measured Kd(380). This degraded performance is expected when the
application of an empirical algorithm is extended beyond its range. Note that, if the true Kd(380)
is 0.02 m−1, a 47% underestimation will result in ∼1.5 times more estimation of UV radiation at
100 m, thus significantly over-emphasize the impact of UV.
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4.1.2. S2011

S2011 is an empirical algorithm centered on the total absorption coefficient for Kd(380), which
performed reasonably well for this evaluation dataset (see Fig. 3(b)). However, the performance
is not uniform across the values of Kd(380), where S2011 underestimated (by 39%) Kd(380)
for values ∼0.1 - 1.0 m−1. On the other hand, for Kd(380) lower than about 0.04 m−1, S2011
overestimated Kd(380) by about 58%, which is likely due to that the range of Kd(380) is higher
than the lower limit of ∼0.04 m−1 when S2011 was developed. This overestimation of Kd(380)
will significantly under-represent UV radiation at deeper depths (by a factor about 3 at 100 m).
In addition to the data dependency of any empirical algorithms, another reason for the deviations
of S2011 is likely in the model itself (Eq. 9), where Kd(380) is simply modeled as a second-order
polynomial function of a(443). However, radiative transfer indicates that Kd is jointly determined
by both a and bb, thus uneven performance will be resulted when there are different levels of
contributions from backscattering.

4.1.3. C2014

C2014 uses PCA to reduce the dimension of Rrs, and then relates Kd(380) with the scores
of the pre-established principal components through a multiple-component regression. This
algorithm does not perform well for this evaluation dataset (see Fig. 3(c), Table 1). For Kd(380) <
∼0.05 m−1, C2014 overestimated Kd(380) by more than 100%, which, similarly as the results of
S2011, is likely due to that the lower limit of Kd(380) is ∼0.05 m−1 when SeaUVc was developed
(Fichot et al. [9]). The meaning of the principal components derived from a group of Rrs spectra
is vague, thus the physics of a PCA-based algorithm for an optical or geophysical property is not
straightforward. Further, since the principal components are data dependent, the performance of
such kind of algorithms may vary for different datasets.

4.1.4. M2001

The two-steps scheme (M2001) based on Morel and Maritorena [12] performed better at the
lower end (Kd(380) < ∼0.06 m−1) for the three wavelengths (360, 380, and 400 nm) evaluated
here, but generally underestimated (by ∼57%) Kd(UV) for Kd(380) > 0.1 m−1 (see Figs. 3(d),
4(a), and 4(d)). The Morel and Maritorena [12] system was developed based on a large dataset
mostly collected in oceanic waters (Kd(420) is in a range of 0.007 - 0.94 m−1), but most of the
measurements of this evaluation dataset were from coastal waters, which might explain the very
good performance at the lower end (including the ultra-oligotrophic ocean), but unsatisfactory
results for coastal waters.

4.1.5. V2001

Similar as M2001, V2001 estimates Kd(UV) based on the “Case 1” concept, but taking a much
more complex data processing scheme. For this evaluation dataset that covers both oceanic
and coastal waters. Interestingly, similarly as M2001, V2001 also underestimated Kd(UV) for
Kd(380) > 0.1 m−1 (see Figs. 3(e), 4(b), and 4(e)), but this underestimation (∼44%) is not as
severe as that of M2001. But for the lower end (Kd(380) < ∼0.03 m−1), V2001 significantly
(89%) overestimated Kd(UV) (see Figs. 3(e), 4(b), and 4(e)), likely due to an extension of this
algorithm beyond its limit (the lower end was 0.03 m−1 when the algorithm was developed). It is
found that the estimated Kd(400) agreed better with field measurements compared to Kd(360)
(see Table 1), which in part is due to the selection of the S value in the system (Eq. 8a), as a large
S value (0.017 nm−1) suggests higher estimation of aDOM(360) due to the exponential function,
which further propagates to the estimated Kd(360). For oceanic waters, Bricaud et al. [55]
suggested that S is around 0.014 nm−1.
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4.1.6. L2013

L2013 is an algorithm centered on the IOPs (absorption and backscattering coefficients in
particular), with the relationship established from the radiative transfer equation. More importantly,
contrary to empirical algorithms, the algorithm coefficients of L2013 were not derived from any
datasets obtained from field measurements, thus theoretically its application to an Rrs spectrum
is not subjective to datasets. As a result, it is not surprising to see that L2013 has the best
performance among the six algorithms for this evaluation dataset that covers wide range of waters
(see Figs. 3(f), 4(c), 4(f), and Table 1). Especially, the performance is uniform for Kd(380)
in a range of ∼0.02–2.0 m−1, rather showing any obvious deviations for any specific ranges
or values of Kd(UV). This further highlights the power of systems based on radiative transfer,
where the performance is the same for all waters and for all wavelengths, instead of varying
performances with water types or wavelengths showing by the empirical algorithms (e.g., J2003,
S2011). In addition, these results further support the deep-learning system (Wang et al. 2021)
for the estimation of Rrs(UV) as well as QAA for the algebraic derivation of IOPs from an Rrs
spectrum, for waters from ultra-oligotrophic ocean to coastal waters.

4.2. Evaluation of VIIRS Kd(UV) with in situ measurements

Since the ultimate goal of an algorithm is to apply it to ocean color satellites to obtain global
distribution of Kd(UV), here we further evaluated Kd(UV) obtained by VIIRS measurements,
where the locations of the satellite-insitu matchup stations are shown in Fig. 1(b) with blue stars.
As the other five algorithms showed limited accuracy to some waters, the evaluation is focused
on Kd(UV) from L2013 only. Also included for this comparison is Kd(410, 443, 486) obtained
from L2013. Fig. 5 (a - f ) presents scatterplots between inversion and measured Kd (Kd(360) is
in a range of 0.046–0.84 m−1), while statistical measures are presented in Table 2.

Table 2. Statistical analysis between matchup VIIRS and in situ K d(λ). N for the number of matchup
stations.

Band Data Number (N) RMSD (m−1) MARD MAURD bias (m−1) R2

360

62

0.090 0.19 0.21 -0.031 0.92

380 0.071 0.21 0.22 -0.022 0.94

400 0.065 0.26 0.25 -0.020 0.95

410 0.065 0.27 0.25 -0.021 0.95

443 0.052 0.28 0.25 -0.015 0.96

486 0.047 0.27 0.25 -0.015 0.96

Overall, for these Kd(UV), the R2 values are greater than 0.92, with MARD between 0.19 (at
360 nm) and 0.28 (at 443 nm), and bias in a range of ∼ -0.031 to -0.015 m−1. These evaluation
indicators are slightly worse than that obtained from the field-measured Rrs, a result not surprising
for ocean color satellite remote sensing. Reasons contributing to this lowered performance
include: 1) No exact “matchup” between satellite and field measurements due to gaps in time and
space [56,57], which is one of the major sources of data deviation [53]. 2) Imperfect atmosphere
correction in both oceanic and coastal areas [58–61], consequently the errors in the nLw (Rrs)
product will be propagated to those further estimated from Rrs. Fig. 5 (d - f ) compares VIIRS
Kd(410, 443, 486) with in situ Kd(410, 443, 486), where the MARD values range are ∼ 0.27
- 0.28 and RMSD ∼ 0.050 m−1, which are just slightly better than those of Kd(UV), further
indicating the deep-learning estimated Rrs(UV) has similar quality as those of Rrs in the visible
(Wang et al. 2021).

There are a few stations (the red triangles in Fig. 5) where VIIRS Kd(360 - 486) are much
lower than in situ Kd (Kd(360) is around 1.0 m−1). These four stations were from a nearshore
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Fig. 5. Comparison between VIIRS and measured Kd . (a) Kd(360), (b) Kd(380), (c)
Kd(400), (d) Kd(410), (e) Kd(443), and (f ) Kd(486). The red triangles represent the matching
data of the red-star location in Fig. 1(b).

area (Fig. 1(b), the red star) and collected on Oct. 14, 2016. Based on the VIIRS Level-2 flags
processed by NOAA MSL12, there are stray-light contaminations in this VIIRS image, which may
be the reason for the larger deviation of these stations. In addition, there was heavy stratification
in these coastal waters with a high-sediment fresh-water layer at the surface from runoff due to
Hurricane Matthew. This complicates satellite measures to the corresponding profiles [62].

Fig. 6. Global distribution of VIIRS Kd(λ) climatology data. (a) Kd(360), (b) Kd(380), (c)
Kd(400), (d) Kd(486).
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4.3. Kd(UV) of global ocean from VIIRS

As the above shows very good estimation of Kd(UV) from VIIRS, examples of Kd(360, 380, 400
and 486 (with the Sun at zenith) of the global ocean are produced from VIIRS for climatology Rrs
(see Fig. 6). Compared to the partial Kd(360) map obtained by Lee et al. [19], the results extend the
estimation of Kd(UV) to the global ocean, which then help providing solar radiation distribution
in the upper column for the evaluation of photochemical and photobiological processes in the
ocean.

Spatially, while Kd(380) is as low as ∼0.02 m−1 at the South Pacific Gyre, but due to the
influence of terrestrial sources [15], Kd(380) can be as high as ∼3.0 m−1 in coastal regions such
as the Yangtze Estuary. If the depth of 10% surface light can be a measure of the penetration of
solar radiation, the penetration depth of solar radiation at 380 nm is ∼100 m at South Pacific
Gyre. Such a strong penetration is expected to have comprehensive impacts on biogeochemical
processes in the oceans [63,64].

5. Conclusions

From a large dataset covering super clear ocean gyre waters and coastal turbid waters, six
empirical and semi-analytical algorithms developed for the estimation of Kd(UV) from the
measurement of ocean color were evaluated. The five empirical algorithms showed reasonable
results for some Kd(UV) values or waters, but indicated limitations for other waters, suggesting
challenges to apply such empirical algorithms for the generation of Kd(UV) for the global oceans
from satellite ocean color missions. The semi-analytical algorithm centered on waters’ inherent
optical properties, however, not only obtained the best estimates compared to field measurements,
also show uniform performance from ultra-oligotrophic ocean to coastal waters, as well as for the
three wavelengths in the UV evaluated. These results further highlight the power of algorithms
based on the radiative transfer, which is not limited to a single wavelength (such as the empirical
algorithms for Kd(490) or Kd(380), for instance), rather applicable for an accurate estimation of a
Kd spectrum, as long as the spectra of the total absorption and backscattering can be accurately
produced from an Rrs spectrum. Also, the excellent agreement between Kd estimated from VIIRS
ocean color data (with the semi-analytical algorithm) and field measurements indicates that
VIIRS normalized water-leaving radiance (equivalent to Rrs) has very high quality. On the other
hand, it is necessary to keep in mind that this dataset does not include waters with phytoplankton
blooms containing mycosporine-like amino acids (MAAs). Due to the strong absorption of
MAAs in the UV domain [65,66], the remote sensing of Kd(UV) for such kind of waters deserve
further studies.

To summarize, with the deep learning system developed for the estimation of Rrs(UV) in the
near-blue domain from Rrs in the visible, it is now feasible to produce highly reliable Kd(UV)
from ocean color satellites dating back to the SeaWiFS, MODIS era. A generation of global data
product in the past 20+ years will then lay the foundation for the study of long-term interactions
between UV radiation and biogeochemical processes in the global ocean.
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